3.5.31 \(\int \frac {x^7}{(8 c-d x^3)^2 \sqrt {c+d x^3}} \, dx\) [431]

3.5.31.1 Optimal result
3.5.31.2 Mathematica [C] (verified)
3.5.31.3 Rubi [A] (verified)
3.5.31.4 Maple [C] (warning: unable to verify)
3.5.31.5 Fricas [C] (verification not implemented)
3.5.31.6 Sympy [F]
3.5.31.7 Maxima [F]
3.5.31.8 Giac [F]
3.5.31.9 Mupad [F(-1)]

3.5.31.1 Optimal result

Integrand size = 27, antiderivative size = 641 \[ \int \frac {x^7}{\left (8 c-d x^3\right )^2 \sqrt {c+d x^3}} \, dx=\frac {62 \sqrt {c+d x^3}}{27 d^{8/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )}+\frac {8 x^2 \sqrt {c+d x^3}}{27 d^2 \left (8 c-d x^3\right )}+\frac {44 \sqrt [6]{c} \arctan \left (\frac {\sqrt {3} \sqrt [6]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\sqrt {c+d x^3}}\right )}{27 \sqrt {3} d^{8/3}}-\frac {44 \sqrt [6]{c} \text {arctanh}\left (\frac {\left (\sqrt [3]{c}+\sqrt [3]{d} x\right )^2}{3 \sqrt [6]{c} \sqrt {c+d x^3}}\right )}{81 d^{8/3}}+\frac {44 \sqrt [6]{c} \text {arctanh}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{81 d^{8/3}}-\frac {31 \sqrt {2-\sqrt {3}} \sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt {\frac {c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} E\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x}\right )|-7-4 \sqrt {3}\right )}{9\ 3^{3/4} d^{8/3} \sqrt {\frac {\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt {c+d x^3}}+\frac {62 \sqrt {2} \sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt {\frac {c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x}\right ),-7-4 \sqrt {3}\right )}{27 \sqrt [4]{3} d^{8/3} \sqrt {\frac {\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt {c+d x^3}} \]

output
-44/81*c^(1/6)*arctanh(1/3*(c^(1/3)+d^(1/3)*x)^2/c^(1/6)/(d*x^3+c)^(1/2))/ 
d^(8/3)+44/81*c^(1/6)*arctanh(1/3*(d*x^3+c)^(1/2)/c^(1/2))/d^(8/3)+44/81*c 
^(1/6)*arctan(c^(1/6)*(c^(1/3)+d^(1/3)*x)*3^(1/2)/(d*x^3+c)^(1/2))/d^(8/3) 
*3^(1/2)+8/27*x^2*(d*x^3+c)^(1/2)/d^2/(-d*x^3+8*c)+62/27*(d*x^3+c)^(1/2)/d 
^(8/3)/(d^(1/3)*x+c^(1/3)*(1+3^(1/2)))+62/81*c^(1/3)*(c^(1/3)+d^(1/3)*x)*E 
llipticF((d^(1/3)*x+c^(1/3)*(1-3^(1/2)))/(d^(1/3)*x+c^(1/3)*(1+3^(1/2))),I 
*3^(1/2)+2*I)*2^(1/2)*((c^(2/3)-c^(1/3)*d^(1/3)*x+d^(2/3)*x^2)/(d^(1/3)*x+ 
c^(1/3)*(1+3^(1/2)))^2)^(1/2)*3^(3/4)/d^(8/3)/(d*x^3+c)^(1/2)/(c^(1/3)*(c^ 
(1/3)+d^(1/3)*x)/(d^(1/3)*x+c^(1/3)*(1+3^(1/2)))^2)^(1/2)-31/27*c^(1/3)*(c 
^(1/3)+d^(1/3)*x)*EllipticE((d^(1/3)*x+c^(1/3)*(1-3^(1/2)))/(d^(1/3)*x+c^( 
1/3)*(1+3^(1/2))),I*3^(1/2)+2*I)*(1/2*6^(1/2)-1/2*2^(1/2))*((c^(2/3)-c^(1/ 
3)*d^(1/3)*x+d^(2/3)*x^2)/(d^(1/3)*x+c^(1/3)*(1+3^(1/2)))^2)^(1/2)*3^(1/4) 
/d^(8/3)/(d*x^3+c)^(1/2)/(c^(1/3)*(c^(1/3)+d^(1/3)*x)/(d^(1/3)*x+c^(1/3)*( 
1+3^(1/2)))^2)^(1/2)
 
3.5.31.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 10.17 (sec) , antiderivative size = 167, normalized size of antiderivative = 0.26 \[ \int \frac {x^7}{\left (8 c-d x^3\right )^2 \sqrt {c+d x^3}} \, dx=\frac {320 c x^2 \left (c+d x^3\right )+40 c x^2 \left (-8 c+d x^3\right ) \sqrt {1+\frac {d x^3}{c}} \operatorname {AppellF1}\left (\frac {2}{3},\frac {1}{2},1,\frac {5}{3},-\frac {d x^3}{c},\frac {d x^3}{8 c}\right )+31 d x^5 \left (-8 c+d x^3\right ) \sqrt {1+\frac {d x^3}{c}} \operatorname {AppellF1}\left (\frac {5}{3},\frac {1}{2},1,\frac {8}{3},-\frac {d x^3}{c},\frac {d x^3}{8 c}\right )}{1080 c d^2 \left (8 c-d x^3\right ) \sqrt {c+d x^3}} \]

input
Integrate[x^7/((8*c - d*x^3)^2*Sqrt[c + d*x^3]),x]
 
output
(320*c*x^2*(c + d*x^3) + 40*c*x^2*(-8*c + d*x^3)*Sqrt[1 + (d*x^3)/c]*Appel 
lF1[2/3, 1/2, 1, 5/3, -((d*x^3)/c), (d*x^3)/(8*c)] + 31*d*x^5*(-8*c + d*x^ 
3)*Sqrt[1 + (d*x^3)/c]*AppellF1[5/3, 1/2, 1, 8/3, -((d*x^3)/c), (d*x^3)/(8 
*c)])/(1080*c*d^2*(8*c - d*x^3)*Sqrt[c + d*x^3])
 
3.5.31.3 Rubi [A] (verified)

Time = 1.00 (sec) , antiderivative size = 641, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {970, 27, 1054, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^7}{\left (8 c-d x^3\right )^2 \sqrt {c+d x^3}} \, dx\)

\(\Big \downarrow \) 970

\(\displaystyle \frac {8 x^2 \sqrt {c+d x^3}}{27 d^2 \left (8 c-d x^3\right )}-\frac {\int \frac {c x \left (31 d x^3+16 c\right )}{\left (8 c-d x^3\right ) \sqrt {d x^3+c}}dx}{27 c d^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {8 x^2 \sqrt {c+d x^3}}{27 d^2 \left (8 c-d x^3\right )}-\frac {\int \frac {x \left (31 d x^3+16 c\right )}{\left (8 c-d x^3\right ) \sqrt {d x^3+c}}dx}{27 d^2}\)

\(\Big \downarrow \) 1054

\(\displaystyle \frac {8 x^2 \sqrt {c+d x^3}}{27 d^2 \left (8 c-d x^3\right )}-\frac {\int \left (\frac {264 c x}{\left (8 c-d x^3\right ) \sqrt {d x^3+c}}-\frac {31 x}{\sqrt {d x^3+c}}\right )dx}{27 d^2}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {8 x^2 \sqrt {c+d x^3}}{27 d^2 \left (8 c-d x^3\right )}-\frac {-\frac {62 \sqrt {2} \sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt {\frac {c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{d} x+\left (1-\sqrt {3}\right ) \sqrt [3]{c}}{\sqrt [3]{d} x+\left (1+\sqrt {3}\right ) \sqrt [3]{c}}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} d^{2/3} \sqrt {\frac {\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt {c+d x^3}}+\frac {31 \sqrt [4]{3} \sqrt {2-\sqrt {3}} \sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt {\frac {c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} E\left (\arcsin \left (\frac {\sqrt [3]{d} x+\left (1-\sqrt {3}\right ) \sqrt [3]{c}}{\sqrt [3]{d} x+\left (1+\sqrt {3}\right ) \sqrt [3]{c}}\right )|-7-4 \sqrt {3}\right )}{d^{2/3} \sqrt {\frac {\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt {c+d x^3}}-\frac {44 \sqrt [6]{c} \arctan \left (\frac {\sqrt {3} \sqrt [6]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\sqrt {c+d x^3}}\right )}{\sqrt {3} d^{2/3}}+\frac {44 \sqrt [6]{c} \text {arctanh}\left (\frac {\left (\sqrt [3]{c}+\sqrt [3]{d} x\right )^2}{3 \sqrt [6]{c} \sqrt {c+d x^3}}\right )}{3 d^{2/3}}-\frac {44 \sqrt [6]{c} \text {arctanh}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{3 d^{2/3}}-\frac {62 \sqrt {c+d x^3}}{d^{2/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )}}{27 d^2}\)

input
Int[x^7/((8*c - d*x^3)^2*Sqrt[c + d*x^3]),x]
 
output
(8*x^2*Sqrt[c + d*x^3])/(27*d^2*(8*c - d*x^3)) - ((-62*Sqrt[c + d*x^3])/(d 
^(2/3)*((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)) - (44*c^(1/6)*ArcTan[(Sqrt[3]* 
c^(1/6)*(c^(1/3) + d^(1/3)*x))/Sqrt[c + d*x^3]])/(Sqrt[3]*d^(2/3)) + (44*c 
^(1/6)*ArcTanh[(c^(1/3) + d^(1/3)*x)^2/(3*c^(1/6)*Sqrt[c + d*x^3])])/(3*d^ 
(2/3)) - (44*c^(1/6)*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/(3*d^(2/3)) + ( 
31*3^(1/4)*Sqrt[2 - Sqrt[3]]*c^(1/3)*(c^(1/3) + d^(1/3)*x)*Sqrt[(c^(2/3) - 
 c^(1/3)*d^(1/3)*x + d^(2/3)*x^2)/((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)^2]*E 
llipticE[ArcSin[((1 - Sqrt[3])*c^(1/3) + d^(1/3)*x)/((1 + Sqrt[3])*c^(1/3) 
 + d^(1/3)*x)], -7 - 4*Sqrt[3]])/(d^(2/3)*Sqrt[(c^(1/3)*(c^(1/3) + d^(1/3) 
*x))/((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)^2]*Sqrt[c + d*x^3]) - (62*Sqrt[2] 
*c^(1/3)*(c^(1/3) + d^(1/3)*x)*Sqrt[(c^(2/3) - c^(1/3)*d^(1/3)*x + d^(2/3) 
*x^2)/((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3 
])*c^(1/3) + d^(1/3)*x)/((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)], -7 - 4*Sqrt[ 
3]])/(3^(1/4)*d^(2/3)*Sqrt[(c^(1/3)*(c^(1/3) + d^(1/3)*x))/((1 + Sqrt[3])* 
c^(1/3) + d^(1/3)*x)^2]*Sqrt[c + d*x^3]))/(27*d^2)
 

3.5.31.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 970
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[(-a)*e^(2*n - 1)*(e*x)^(m - 2*n + 1)*(a + b*x^n) 
^(p + 1)*((c + d*x^n)^(q + 1)/(b*n*(b*c - a*d)*(p + 1))), x] + Simp[e^(2*n) 
/(b*n*(b*c - a*d)*(p + 1))   Int[(e*x)^(m - 2*n)*(a + b*x^n)^(p + 1)*(c + d 
*x^n)^q*Simp[a*c*(m - 2*n + 1) + (a*d*(m - n + n*q + 1) + b*c*n*(p + 1))*x^ 
n, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[ 
n, 0] && LtQ[p, -1] && GtQ[m - n + 1, n] && IntBinomialQ[a, b, c, d, e, m, 
n, p, q, x]
 

rule 1054
Int[(((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((e_) + (f_.)*(x_)^(n 
_)))/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Int[ExpandIntegrand[(g*x)^m*(a 
+ b*x^n)^p*((e + f*x^n)/(c + d*x^n)), x], x] /; FreeQ[{a, b, c, d, e, f, g, 
 m, p}, x] && IGtQ[n, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
3.5.31.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 4.69 (sec) , antiderivative size = 877, normalized size of antiderivative = 1.37

method result size
elliptic \(\text {Expression too large to display}\) \(877\)
default \(\text {Expression too large to display}\) \(1738\)

input
int(x^7/(-d*x^3+8*c)^2/(d*x^3+c)^(1/2),x,method=_RETURNVERBOSE)
 
output
8/27*x^2*(d*x^3+c)^(1/2)/d^2/(-d*x^3+8*c)-62/81*I/d^3*3^(1/2)*(-c*d^2)^(1/ 
3)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(- 
c*d^2)^(1/3))^(1/2)*((x-1/d*(-c*d^2)^(1/3))/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3 
^(1/2)/d*(-c*d^2)^(1/3)))^(1/2)*(-I*(x+1/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/ 
d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*((-3/2/d 
*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*EllipticE(1/3*3^(1/2)*(I*( 
x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^ 
(1/3))^(1/2),(I*3^(1/2)/d*(-c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1 
/2)/d*(-c*d^2)^(1/3)))^(1/2))+1/d*(-c*d^2)^(1/3)*EllipticF(1/3*3^(1/2)*(I* 
(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2) 
^(1/3))^(1/2),(I*3^(1/2)/d*(-c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^( 
1/2)/d*(-c*d^2)^(1/3)))^(1/2)))+88/243*I/d^5*2^(1/2)*sum(1/_alpha*(-c*d^2) 
^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d 
^2)^(1/3))^(1/2)*(d*(x-1/d*(-c*d^2)^(1/3))/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(- 
c*d^2)^(1/3)))^(1/2)*(-1/2*I*d*(2*x+1/d*(I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2) 
^(1/3)))/(-c*d^2)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*(I*(-c*d^2)^(1/3)*_alpha*3^ 
(1/2)*d-I*3^(1/2)*(-c*d^2)^(2/3)+2*_alpha^2*d^2-(-c*d^2)^(1/3)*_alpha*d-(- 
c*d^2)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1 
/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2),-1/18/d*(2*I*(-c*d^2 
)^(1/3)*3^(1/2)*_alpha^2*d-I*(-c*d^2)^(2/3)*3^(1/2)*_alpha+I*3^(1/2)*c*...
 
3.5.31.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 3.67 (sec) , antiderivative size = 2397, normalized size of antiderivative = 3.74 \[ \int \frac {x^7}{\left (8 c-d x^3\right )^2 \sqrt {c+d x^3}} \, dx=\text {Too large to display} \]

input
integrate(x^7/(-d*x^3+8*c)^2/(d*x^3+c)^(1/2),x, algorithm="fricas")
 
output
-1/243*(72*sqrt(d*x^3 + c)*d*x^2 + 558*(d*x^3 - 8*c)*sqrt(d)*weierstrassZe 
ta(0, -4*c/d, weierstrassPInverse(0, -4*c/d, x)) + 11*(d^4*x^3 - 8*c*d^3 - 
 sqrt(-3)*(d^4*x^3 - 8*c*d^3))*(c/d^16)^(1/6)*log(164916224/3*((d^16*x^9 + 
 318*c*d^15*x^6 + 1200*c^2*d^14*x^3 + 640*c^3*d^13 + sqrt(-3)*(d^16*x^9 + 
318*c*d^15*x^6 + 1200*c^2*d^14*x^3 + 640*c^3*d^13))*(c/d^16)^(5/6) + 6*(2* 
c*d^2*x^7 + 160*c^2*d*x^4 + 320*c^3*x - 6*(5*c*d^12*x^5 + 32*c^2*d^11*x^2 
- sqrt(-3)*(5*c*d^12*x^5 + 32*c^2*d^11*x^2))*(c/d^16)^(2/3) - (7*c*d^7*x^6 
 + 152*c^2*d^6*x^3 + 64*c^3*d^5 + sqrt(-3)*(7*c*d^7*x^6 + 152*c^2*d^6*x^3 
+ 64*c^3*d^5))*(c/d^16)^(1/3))*sqrt(d*x^3 + c) - 36*(5*c*d^10*x^7 + 64*c^2 
*d^9*x^4 + 32*c^3*d^8*x)*sqrt(c/d^16) + 18*(c*d^5*x^8 + 38*c^2*d^4*x^5 + 6 
4*c^3*d^3*x^2 - sqrt(-3)*(c*d^5*x^8 + 38*c^2*d^4*x^5 + 64*c^3*d^3*x^2))*(c 
/d^16)^(1/6))/(d^3*x^9 - 24*c*d^2*x^6 + 192*c^2*d*x^3 - 512*c^3)) - 11*(d^ 
4*x^3 - 8*c*d^3 - sqrt(-3)*(d^4*x^3 - 8*c*d^3))*(c/d^16)^(1/6)*log(-164916 
224/3*((d^16*x^9 + 318*c*d^15*x^6 + 1200*c^2*d^14*x^3 + 640*c^3*d^13 + sqr 
t(-3)*(d^16*x^9 + 318*c*d^15*x^6 + 1200*c^2*d^14*x^3 + 640*c^3*d^13))*(c/d 
^16)^(5/6) - 6*(2*c*d^2*x^7 + 160*c^2*d*x^4 + 320*c^3*x - 6*(5*c*d^12*x^5 
+ 32*c^2*d^11*x^2 - sqrt(-3)*(5*c*d^12*x^5 + 32*c^2*d^11*x^2))*(c/d^16)^(2 
/3) - (7*c*d^7*x^6 + 152*c^2*d^6*x^3 + 64*c^3*d^5 + sqrt(-3)*(7*c*d^7*x^6 
+ 152*c^2*d^6*x^3 + 64*c^3*d^5))*(c/d^16)^(1/3))*sqrt(d*x^3 + c) - 36*(5*c 
*d^10*x^7 + 64*c^2*d^9*x^4 + 32*c^3*d^8*x)*sqrt(c/d^16) + 18*(c*d^5*x^8...
 
3.5.31.6 Sympy [F]

\[ \int \frac {x^7}{\left (8 c-d x^3\right )^2 \sqrt {c+d x^3}} \, dx=\int \frac {x^{7}}{\left (- 8 c + d x^{3}\right )^{2} \sqrt {c + d x^{3}}}\, dx \]

input
integrate(x**7/(-d*x**3+8*c)**2/(d*x**3+c)**(1/2),x)
 
output
Integral(x**7/((-8*c + d*x**3)**2*sqrt(c + d*x**3)), x)
 
3.5.31.7 Maxima [F]

\[ \int \frac {x^7}{\left (8 c-d x^3\right )^2 \sqrt {c+d x^3}} \, dx=\int { \frac {x^{7}}{\sqrt {d x^{3} + c} {\left (d x^{3} - 8 \, c\right )}^{2}} \,d x } \]

input
integrate(x^7/(-d*x^3+8*c)^2/(d*x^3+c)^(1/2),x, algorithm="maxima")
 
output
integrate(x^7/(sqrt(d*x^3 + c)*(d*x^3 - 8*c)^2), x)
 
3.5.31.8 Giac [F]

\[ \int \frac {x^7}{\left (8 c-d x^3\right )^2 \sqrt {c+d x^3}} \, dx=\int { \frac {x^{7}}{\sqrt {d x^{3} + c} {\left (d x^{3} - 8 \, c\right )}^{2}} \,d x } \]

input
integrate(x^7/(-d*x^3+8*c)^2/(d*x^3+c)^(1/2),x, algorithm="giac")
 
output
integrate(x^7/(sqrt(d*x^3 + c)*(d*x^3 - 8*c)^2), x)
 
3.5.31.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^7}{\left (8 c-d x^3\right )^2 \sqrt {c+d x^3}} \, dx=\int \frac {x^7}{\sqrt {d\,x^3+c}\,{\left (8\,c-d\,x^3\right )}^2} \,d x \]

input
int(x^7/((c + d*x^3)^(1/2)*(8*c - d*x^3)^2),x)
 
output
int(x^7/((c + d*x^3)^(1/2)*(8*c - d*x^3)^2), x)